Incentivizing Evaluation via Limited Access to Ground Truth: Peer-Prediction Makes Things Worse
نویسندگان
چکیده
In many settings, an effective way of evaluating objects of interest is to collect evaluations from dispersed individuals and to aggregate these evaluations together. Some examples are categorizing online content and evaluating student assignments via peer grading. For this data science problem, one challenge is to motivate participants to conduct such evaluations carefully and to report them honestly, particularly when doing so is costly. Existing approaches, notably peer-prediction mechanisms, can incentivize truth telling in equilibrium. However, they also give rise to equilibria in which agents do not pay the costs required to evaluate accurately, and hence fail to elicit useful information. We show that this problem is unavoidable whenever agents are able to coordinate using low-cost signals about the items being evaluated (e.g., text labels or pictures). We then consider ways of circumventing this problem by comparing agents’ reports to ground truth, which is available in practice when there exist trusted evaluators—such as teaching assistants in the peer grading scenario—who can perform a limited number of unbiased (but noisy) evaluations. Of course, when such ground truth is available, a simpler approach is also possible: rewarding each agent based on agreement with ground truth with some probability, and unconditionally rewarding the agent otherwise. Surprisingly, we show that the simpler mechanism achieves stronger incentive guarantees given less access to ground truth than a large set of peer-prediction mechanisms.
منابع مشابه
Dwelling on the Negative: Incentivizing Effort in Peer Prediction
Agents are asked to rank two objects in a setting where effort is costly and agents differ in quality (which is the probability that they can identify the correct, ground truth, ranking). We study simple output-agreement mechanisms that pay an agent in the case she agrees with the report of another, and potentially penalizes for disagreement through a negative payment. Assuming access to a qual...
متن کاملSurrogate Scoring Rules and a Dominant Truth Serum for Information Elicitation
We study information elicitation without verification (IEWV) and ask the following question: Can we achieve truthfulness in dominant strategy in IEWV? is paper considers two elicitation seings. e first seing is when the mechanism designer has access to a random variable that is a noisy or proxy version of the ground truth, with known biases. e second seing is the standard peer prediction ...
متن کاملA Geometric Method to Construct Minimal Peer Prediction Mechanisms
Minimal peer prediction mechanisms truthfully elicit private information (e.g., opinions or experiences) from rational agents without the requirement that ground truth is eventually revealed. In this paper, we use a geometric perspective to prove that minimal peer prediction mechanisms are equivalent to power diagrams, a type of weighted Voronoi diagram. Using this characterization and results ...
متن کاملGuided Optical Flow Learning
We study the unsupervised learning of CNNs for optical flow estimation using proxy ground truth data. Supervised CNNs, due to their immense learning capacity, have shown superior performance on a range of computer vision problems including optical flow prediction. They however require the ground truth flow which is usually not accessible except on limited synthetic data. Without the guidance of...
متن کاملCrowdsourcing evaluation of high dynamic range image compression
Crowdsourcing is becoming a popular cost effective alternative to lab-based evaluations for subjective quality assessment. However, crowd-based evaluations are constrained by the limited availability of display devices used by typical online workers, which makes the evaluation of high dynamic range (HDR) content a challenging task. In this paper, we investigate the feasibility of using low dyna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.07042 شماره
صفحات -
تاریخ انتشار 2016